Exercice 1

Résoudre les équations suivantes :

$$3x + 7 = 8x - 9$$

$$(6x-5)^2 = (9x-5)(4x+6)$$

$$-4x + 9 = -9x + 11$$

$$7(3x - 5) - 3(8 + 7x) = 0$$

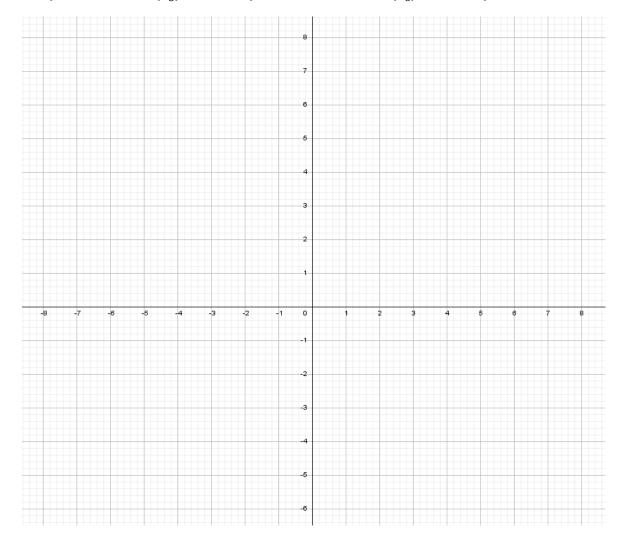
$$(4x - 5)9 - (6x + 7)2 = 6(4x - 10) + 1$$

$$7x - 9 = -2x + 11$$

Exercice 2

1) Représenter dans un repère les droites d'équations suivantes :

$$(d_1): y = -x + 7$$


$$(d_2): 2y - 7 = 0$$

$$(d_3): x = 5$$

$$(d_4)$$
: $3x + 4y + 7 = 0$

$$(d_5): -5x + 3y + 2 = 0$$

$$(d_6)$$
: $-5x - 7y + 2 = 0$

2) Lire les coordonnées des points d'intersection entre les droites

Correction

Exercice 1

$$3x + 7 = 8x - 9$$

$$\Leftrightarrow$$
 $3x - 8x = -7 - 9$

$$\Leftrightarrow$$
 $-5x = -16$

$$\Leftrightarrow x = -\frac{16}{-5} \Leftrightarrow x = 3.2$$

$$S = \{3,2\}$$

$$-4x + 9 = -9x + 11$$

$$\Leftrightarrow$$
 9 $x - 4x = 11 - 9$

$$\Leftrightarrow 5x = 2$$

$$\Leftrightarrow x = \frac{2}{5}$$

$$S = \{0,4\}$$

$$(6x-5)^2 = (9x-5)(4x+6)$$

$$\Leftrightarrow 36x^2 - 60x + 25 = 36x^2 + 54x - 20x - 30$$

$$\Leftrightarrow 36x^2 - 60x - 36x^2 - 54x + 20x = -25 + 30$$

$$\Leftrightarrow -94x = 5 \Leftrightarrow x = \frac{5}{-94}$$

$$S = \left\{ -\frac{5}{94} \right\}$$

$$7(3x - 5) - 3(8 + 7x) = 0$$

$$\Leftrightarrow 21x - 35 - (24 + 21x) = 0$$

$$\Leftrightarrow 21x - 35 - 24 - 21x = 0$$

$$\Leftrightarrow$$
 $-59 = 0$

$$S = \emptyset$$

$$(4x-5)9-(6x+7)2=6(4x-10)+1$$

$$6(4x - 10) + 1 7x - 9 = -2x + 11$$

$$\Leftrightarrow 36x - 45 - (12x + 14) = 24x - 60 + 1$$

$$\Leftrightarrow 7x + 2x = 11 + 9$$

$$\Leftrightarrow 36x - 45 - 12x - 14 = 24x - 59$$

$$\Leftrightarrow$$
9 $x = 20$

$$\Leftrightarrow 24x - 59 = 24x - 59$$
 $\Leftrightarrow 0 = 0$

$$\Rightarrow x = \frac{20}{9}$$

$$S = \{0,4\}$$

$$S = \emptyset$$

Exercice 2

1) Pour pouvoir tracer les droites, on fait des tableaux de valeurs.

$$(d_1): y = -x + 7$$

$$(d_2): 2y-7=0$$

$$(d_3): x = 5$$

x	0	5
у	7	2

$$\Leftrightarrow$$
 2y = 7 \Leftrightarrow y = $\frac{7}{2}$

x	0	5
y	7	7
-	$\frac{1}{2}$	$\frac{1}{2}$

$$(d_4): 3x + 4y + 7 = 0$$

$$(d_4)$$
: $3x + 4y + 7 = 0$ (d_5) : $-5x + 3y + 2 = 0$

$$(d_6)$$
: $-5x - 7y + 2 = 0$

$$\Leftrightarrow 4y = -3x - 7$$

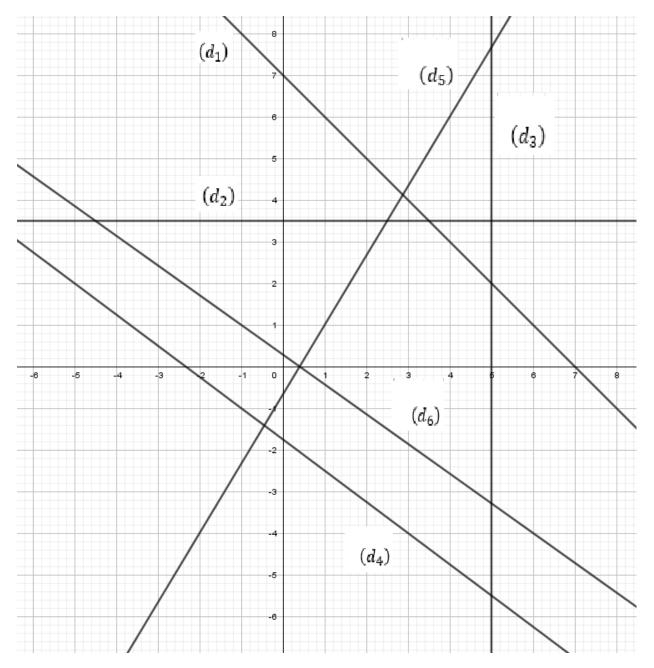
$$\Leftrightarrow 3y = 5x - 2$$

$$\Leftrightarrow$$
 $-7y = 5x - 2$

$$\Leftrightarrow y = -\frac{3}{4}x - \frac{7}{4} \qquad \Leftrightarrow y = \frac{5}{3}x - \frac{2}{3}$$

$$\Leftrightarrow y = \frac{5}{2}x - \frac{2}{3}$$

$$\Leftrightarrow y = \frac{5}{-7}x - \frac{2}{-7} \Leftrightarrow y = -\frac{5}{7}x + \frac{2}{7}$$


www.dimension-k.com

	•		
x	-1	6	-8
у	-7 _{_ 1}	28	42
	$\frac{1}{7} = -1$	$-\frac{1}{7} = -4$	$\frac{1}{7} = 6$

x	0	1	2	3	7
y	7	10	13	20	52
	$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$	$-{4} = -5$	$-\frac{1}{4} = -13$

I	х	0	1	4
	y	2	3	18
	•	$-\frac{1}{3}$	$\frac{1}{3} = 1$	${3} = 6$

Dans le cadre d'équation contenant des fractions, dès qu'on a trouvé une colonne fonctionnelle, on rajoute à x un multiple du dénominateur, et ça nous donnera une colonne exploitable de plus.

2) Lire les coordonnées des points d'intersection entre les droites

 (d_1) coupe (d_2) environ en $(3,5\,;3,5)$, (d_3) environ en $(5\,;2)$, et (d_5) environ en $(2,8\,;4,2)$

 (d_2) coupe (d_3) environ en (5;3,5) et (d_6) environ en (-4,5;3,5)

 (d_3) coupe (d_4) environ en (5; -4,5), (d_5) environ en (5; 7,5) et (d_6) environ en (5; -3,3)

 (d_4) coupe (d_5) environ en (-0.5; -1.5)