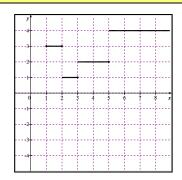
Les fonctions de référence

1. Les fonctions en escaliers

Une fonction **en escaliers** est une fonction constante par intervalles.

Exemple. la fonction f définie sur $[1,+\infty[$

$$\begin{cases} f(x) = 3 & \text{si} & 1 \le x \le 2 \\ f(x) = 1 & \text{si} & 2 < x \le 3 \\ f(x) = 2 & \text{si} & 3 < x < 5 \\ f(x) = 4 & \text{si} & 5 \le x \end{cases}$$



2. Les fonctions affines

Une **fonction affine** f est définie sur \mathbb{R} par f(t) = at + b où a et b sont des réels fixés. Une fonction affine est dérivable sur \mathbb{R} et, pour tout nombre réel t, f'(t) = a.

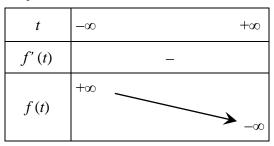
 $\operatorname{Cas} a > 0$

Cas a < 0

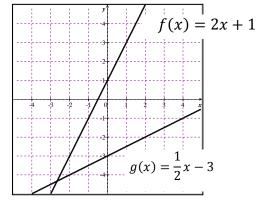
f est strictement croissante sur \mathbb{R}

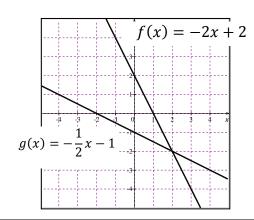
 $\begin{array}{c|cccc}
t & -\infty & +\infty \\
f'(t) & + & \\
f(t) & +\infty
\end{array}$

f est strictement décroissante sur $\mathbb R$



Exemples.





3. fonctions affines par morceaux

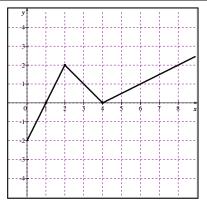
Une fonction **affine par morceaux** est une fonction affine par intervalles.

Exemple. Soit f fonction affine par morceaux définie sur $[0,+\infty[$:

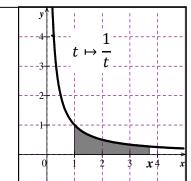
$$f(t) = 2t - 2 \quad \text{si} \quad 0 \le t \le 2$$

$$f(t) = -t + 4 \quad \text{si} \quad 2 \le t \le 4$$

$$f(t) = \frac{1}{2}t - 2 \quad \text{si} \quad 4 \le t$$



4. La fonction logarithme népérien La fonction logarithme népérien notée ln, est la primitive de la fonction $x \mapsto \frac{1}{x} \sup]0,+\infty[$ telle que $\ln 1 = 0$.



Représentation:

Pour tout x > 0, ln x est l'aire de la surface hachurée cicontre entre les bornes 1 et x avec pour convention que cette aire est négative lorsque 0 < x < 1.

Propriétés du logarithme népérien.

Pour tous réels a et b tels que a > 0, b > 0 et pour tout entier relatif n.

$$\ln(a \times b) = \ln a + \ln b$$

$$\ln \frac{1}{a} = -\ln a$$

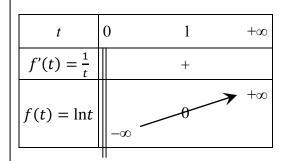
$$\ln \frac{a}{b} = \ln a - \ln b$$

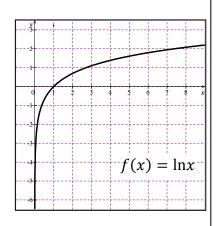
$$\ln\sqrt{a} = \frac{1}{2}\ln a$$

$$\ln a^n = n \ln a$$

$\ln(a \times b) = \ln a + \ln b$ $\ln \frac{1}{a} = -\ln a$ $\ln \frac{a}{b} = \ln a - \ln b$ $\ln \sqrt{a} = \frac{1}{2} \ln a$ Variations du logarithme népérien.

Pour tout $t \in]0,+\infty[$, la dérivée de ln est la fonction : $t \mapsto \frac{1}{t}$. La fonction ln est strictement croissante sur $]0,+\infty[$.





5. La fonction exponentielle

La fonction exponentielle notée exp, est la fonction qui à tout nombre réel t associe le nombre strictement positif unique y tel que $t = \ln y$: $\exp : \mathbb{R} \to]0, +\infty[$ $t \mapsto y = \exp t = e^t \text{ et on a } t = \ln y$

Propriétés de l'exponentielle.

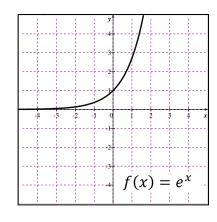
Pour tous réels a et b tels que a > 0, b > 0 et pour tout entier relatif n.

$$e^{a+b} = e^a \times e^b$$
, $e^{a-b} = \frac{e^a}{e^b}$, $e^{-a} = \frac{1}{e^a}$ et $(e^a)^n = e^{na}$

Variations de l'exponentielle.

Pour tout $t \in \mathbb{R}$, la dérivée de exp est elle-même. La fonction exp est strictement croissante sur \mathbb{R} .

t	$-\infty$ 0 $+\infty$
$f'(t) = e^t$	+
$f(t) = e^t$	0 +∞



6. Les fonctions puissances

Soit $\alpha \in \mathbb{R}$, la fonction puissance f_{α} d'exposant α est la fonction définie sur $]0,+\infty[$ par $f_{\alpha}(t) = t^{\alpha} = e^{\alpha \ln t}$

Dérivée de la fonction puissance.

Pour tout $\alpha \in \mathbb{R}$, la fonction f_{α} est dérivable sur $]0,+\infty[$ et $f'_{\alpha}(t) = \alpha t^{\alpha-1}$.

Variations de la fonction puissance.

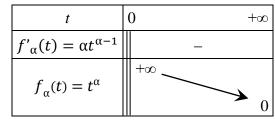
Lorsque $\alpha=0$, la fonction $f_0(t)=t^0=1$ est constante sur $]0,+\infty[$. Lorsque $\alpha\neq 0$, $f'_{\alpha}(t)=\alpha t^{\alpha-1}$ est du signe de α sur $]0,+\infty[$.

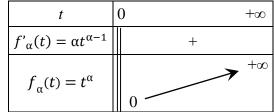
Cas $\alpha < 0$

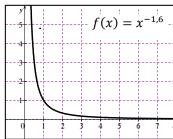
Cas $\alpha > 0$

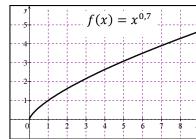
f est strictement décroissante sur \mathbb{R}

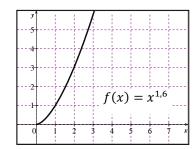
f est strictement croissante sur \mathbb{R}











7. Les fonctions circulaires

Le plan est muni du repère orthonormal $(0, \vec{t}, \vec{j})$. A tout réel t, on associe le point M du cercle trigonométrique tel que l'angle (\vec{i}, \overline{OM}) mesure t radians. On pose alors cos t = abscisse de M et sin t = ordonnée de M. Ces deux fonctions sont définies sur \mathbb{R} et sont à valeurs dans [-1,1]. Périodicité et parité des fonctions circulaires.

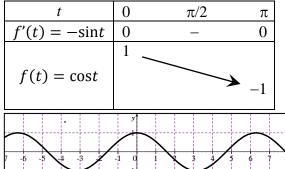
 $\cos(t+2\pi) = \cos t$ et $\sin(t+2\pi) = \sin t$ donc les fonctions sinus et cosinus sont périodiques de période 2π .

 $\cos(-t) = \cos t \operatorname{et} \sin(-t) = -\sin t \operatorname{donc} \operatorname{la}$ fonction cosinus est paire et la fonction sinus est impaire. Dérivée des fonctions circulaires.

Les fonctions sinus et cosinus sont dérivables sur \mathbb{R} et pour tout $t \in \mathbb{R}$, sin' $t = \cos t$ et $\cos t = -\sin t$.

Variations des fonctions circulaires.

	t	()		$\pi/2$		π
	$f'(t) = \cos t$	t 1		+	0	_	-1
	$f(t) = \sin t$		0 ′	<i>></i>	1		0
-6	-5 4 3 2	-1 0	1	2	3 4	5/8	7 x
	$f(x) = \sin x$						



I. Limites d'une fonction

Dans les tableaux ci-dessous : $a \in \mathbb{R}$ ou $a = +\infty$ ou $a = -\infty$, $L \in \mathbb{R}$

← Somme de fonctions.

$\operatorname{Si} \lim_{x \to a} u(x)$	L	L	L	+∞	+∞	$-\infty$
et $\lim_{x\to a} v(x)$	L'	∞ +	$-\infty$	+∞	$-\infty$	$-\infty$
Alors $\lim_{x \to a} [u(x) + v(x)]$	L+L'	+∞	$-\infty$	$+\infty$	Forme indéterminée	$-\infty$

↑ Produit de fonctions.

$\operatorname{Si} \lim_{x \to a} u(x)$	L	L≠0	0	+∞ ou −∞
et $\lim_{x \to a} v(x)$	L'	+∞ on −∞	$+\infty$ on $-\infty$	+∞ on −∞
alors $\lim_{x\to a} [u(x) \times$	L×L'	+∞ ou −∞ selon la	Forme	+∞ ou −∞ selon la
νx		règle des signes	indéterminée	règle des signes

→ Inverse d'une fonction.

$\operatorname{Si} \lim_{x \to a} u(x)$	L≠0	0_	0+	+∞	$-\infty$
alors $\lim_{x \to a} \frac{1}{u(x)}$	$\frac{1}{L}$	$-\infty$	$+\infty$	0+	0_

↓ Ouotient de fonctions.

$\operatorname{Si} \lim_{x \to a} u(x)$	L	L≠0	L	0	$+\infty$ ou $-\infty$	$-\infty$ ou $-\infty$
et $\lim_{x\to a} v(x)$	L'≠0	0 ⁺ ou 0 ⁻	$+\infty$ ou $-\infty$	0	$+\infty$ ou $-\infty$	L'
alors $\lim_{x \to a} \frac{u(x)}{v(x)}$	L L'	+∞ ou −∞ selon la règle des signes	0	inc	Forme léterminée	+∞ ou -∞ selon la règle des signes

▶ 1.
$$f(x) = x^2 + \frac{1}{x}$$
, $\lim_{x \to \infty} x^2 = +\infty$ et $\lim_{x \to \infty} \frac{1}{x} = 0$ donc $\lim_{x \to \infty} x^2 + \frac{1}{x} = +\infty$

▶ 1.
$$f(x) = x^2 + \frac{1}{x}$$
, $\lim_{x \to +\infty} x^2 = +\infty$ et $\lim_{x \to +\infty} \frac{1}{x} = 0$ donc $\lim_{x \to +\infty} x^2 + \frac{1}{x} = +\infty$
▶ 2. $f(x) = (-x + 7)\sqrt{x}$, $\lim_{x \to +\infty} -x + 7 = -\infty$ et $\lim_{x \to +\infty} \sqrt{x} = +\infty$ donc $\lim_{x \to +\infty} (-x + 7)\sqrt{x} = -\infty$
▶ 3. $f(x) = x^2 + 4x$ sur \mathbb{R} , $\lim_{x \to -\infty} x^2 = +\infty$ et $\lim_{x \to -\infty} 4x = -\infty$, la forme est donc indéterminée.

▶3.
$$f(x) = x^2 + 4x \text{ sur } \mathbb{R}$$
, $\lim_{x \to -\infty} x^2 = +\infty$ et $\lim_{x \to -\infty} 4x = -\infty$, la forme est donc indéterminée.

Lorsqu'on a une forme indéterminée, on transforme l'écriture de la fonction pour lever l'indétermination.

$$f(x) = x^2 \left(1 + \frac{4}{x}\right), \lim_{x \to -\infty} x^2 = +\infty \text{ et } \lim_{x \to -\infty} \left(1 + \frac{4}{x}\right) = 1 \text{ donc } \lim_{x \to -\infty} x^2 + 4x = +\infty$$

$$g(x) = \frac{x\left(2-\frac{3}{x}\right)}{x\left(1+\frac{1}{x}\right)} = \frac{2-\frac{3}{x}}{1+\frac{1}{x}}, \lim_{x \to +\infty} 2 - \frac{3}{x} = 2 \text{ et } \lim_{x \to +\infty} 1 + \frac{1}{x} = 1 \text{ donc } \lim_{x \to +\infty} \frac{2x-3}{x+1} = \frac{2}{1} = 2$$

Théorème de Composition des fonctions.

Soit g, f et u trois functions telles que $f(x) = g \circ u(x) = g(u(x))$ pour tout x.

Si
$$\lim_{x\to a} u(x) = b$$
 et $\lim_{t\to b} g(t) = c$ alors $\lim_{x\to a} f(x) = \lim_{x\to a} g(u(x)) = c$

Exemple.

$$f(x) = (\ln x)^2 \text{ sur }]0, +\infty[$$
. La fonction f est composée de $x \stackrel{u}{\mapsto} \ln x \stackrel{g}{\mapsto} (\ln x^2)$ où $u: x \mapsto \ln x$ et $g: t \mapsto t^2$.

$$\lim_{x \to 0^{+}} u(x) = \lim_{x \to 0^{+}} \ln x = -\infty \text{ et } \lim_{t \to -\infty} g(t) = \lim_{t \to -\infty} t^{2} = +\infty \text{ donc } \lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} g(u(x)) = +\infty$$

Théorème des gendarmes.

Si
$$u(x) \le f(x) \le v(x)$$
 et $\lim_{x \to +\infty} u(x) = \lim_{x \to +\infty} v(x) = L$ alors $\lim_{x \to +\infty} f(x) = L$.

Théorème.

Si $u(x) \le f(x)$ et si $\lim_{x \to +\infty} u(x) = +\infty$ alors $\lim_{x \to +\infty} f(x) = +\infty$

Exemple.

 $f(x) = \frac{\cos x}{x^2} \text{ sur }]0, +\infty[, \text{ pour tout } x - 1 \le \cos x \le 1 \text{ donc } \frac{-1}{x^2} \le \frac{\cos x}{x^2} \le \frac{1}{x^2}$ or $\lim_{x \to +\infty} \frac{-1}{x^2} = \lim_{x \to +\infty} \frac{1}{x^2} = 0 \text{ donc } \lim_{x \to +\infty} \frac{\cos x}{x^2} = 0.$

Théorème. Voir fomulaire.

- Pour tout nombre réel $\alpha > 0$, $\lim_{t \to +\infty} \frac{\ln t}{t^{\alpha}} = 0$, $\lim_{t \to +\infty} \frac{e^t}{t^{\alpha}} = +\infty$ Pour tout nombre réel $\alpha > 0$, $\lim_{t \to 0} t^{\alpha} \ln t = 0$

Exemples.

►1. Sur
$$]0,+\infty[f(x)] = \frac{\ln(0,3x)}{5x} = \frac{\ln(0,3x)}{0,3x} \times \frac{0,3}{5}$$

▶ 1. Sur]0,+∞[
$$f(x) = \frac{\ln(0,3x)}{5x} = \frac{\ln(0,3x)}{0,3x} \times \frac{0,3}{5}$$

 $\lim_{x \to +\infty} 0,3x = +\infty$ et $\lim_{t \to +\infty} \frac{\ln t}{t} = 0$ donc $\lim_{x \to +\infty} f(x) = 0$
▶ 2. $f(x) = xe^{-2x} = \frac{x}{e^{2x}} = \frac{x}{e^x} \times \frac{1}{e^x}, \lim_{x \to +\infty} \frac{x}{e^x} = 0$ et $\lim_{x \to +\infty} \frac{1}{e^x} = 0$ donc $\lim_{x \to +\infty} f(x) = 0$

II. Les fonctions circulaires réciproques

Définition de la fonction arc sinus.

La fonction réciproque de la fonction sinus restreinte à l'intervalle de définition $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ est appelée Arc sinus. On la note Arc sin ou sin⁻¹.

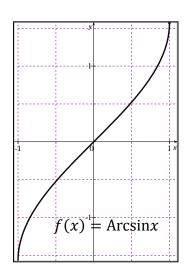
Arcsin:
$$[-1;1] \rightarrow \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

 $x \mapsto \operatorname{Arcsin} x = y \iff x = \sin y$

Exemple.

$$Arcsin1 = \frac{\pi}{2}, Arcsin(-1) = -\frac{\pi}{2}, Arcsin(0) = 0$$

$$Arcsin\left(\frac{1}{2}\right) = \frac{\pi}{6}, Arcsin\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{3}, Arcsin\left(\frac{\sqrt{2}}{2}\right) = \frac{\pi}{4}, Arcsin\left(-\frac{1}{2}\right) = -\frac{\pi}{6}.$$



Propriété.

La fonction Arc sinus est dérivable sur]-1,1[et Arcsin'(x) = $\frac{1}{\sqrt{1-x^2}}$

Définition de la fonction arc cosinus.

La fonction réciproque de la fonction cosinus restreinte à l'intervalle de définition $[0,\pi]$ est appelée Arc cosinus. On la note Arc cos ou cos⁻¹.

Arccos :
$$[-1; 1] \rightarrow [0, \pi]$$

 $x \mapsto \operatorname{Arccos}(x) = y \iff x = \cos y$

Exemple.

Arccos
$$1 = 0$$
, Arccos $(-1) = \pi$, Arccos $0 = \frac{\pi}{2}$
Arccos $\frac{\sqrt{2}}{2} = \frac{\pi}{4}$, Arccos $\frac{1}{2} = \frac{\pi}{3}$, Arccos $\frac{\sqrt{3}}{2} = \frac{\pi}{6}$
Arccos $\left(-\frac{1}{2}\right) = \frac{2\pi}{3}$.



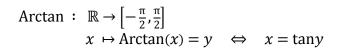
Propriété.

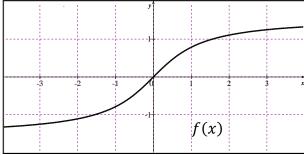
La fonction Arc cosinus est dérivable sur]-1,1[et Arccos'(x) = $\frac{-1}{\sqrt{1-x^2}}$.

Définition de la fonction arc tangente.

La fonction réciproque de la fonction tangente restreinte à

l'intervalle $]-\frac{\pi}{2},\frac{\pi}{2}[$ est appelée Arc tangente. On la note Arc tan ou tan⁻¹.





Exemple.

Arctan 0 = 0, Arctan $(1) = \frac{\pi}{4}$, Arctan $(-1) = -\frac{\pi}{4}$

Propriété.

La fonction Arc tangente est dérivable sur P et Arctan'(x) = $\frac{1}{x^2+1}$.

III. Exemples de fonctions à valeurs complexes

 \leftarrow Fonction $t \mapsto e^{it}$

Pour tout nombre réel t, on associe le nombre complexe $e^{it} = \cos t + i \sin t$. C'est le nombre complexe de module 1 et dont un argument est t.

Propriété. Pour tous nombres réels t et t', $e^{it} \times e^{it'} = e^{i(t+t')}$

Démonstration :

 $e^{it} \times e^{it'} = (\cos t + i \sin t)(\cos t' + i \sin t') = \cos t \cos t' + i \cos t \sin t' + i \sin t \cos t' - \sin t \sin t'$ $e^{it} \times e^{it'} = \cos t \cos t' - \sin t \sin t' + i(\cos t \sin t' + \sin t \cos t')$

$$e^{it} \times e^{it'} = \cos(t+t') + i\sin(t+t') = e^{i(t+t')}$$

 \uparrow Fonction $t \mapsto e^{at}$ avec $a \in \mathbb{C}$

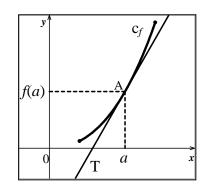
IV. Dérivation d'une fonction

1. Interprétation géométrique

Soit f une fonction définie sur un intervalle I et c_f sa courbe représentative dans un repère orthogonal.

Soit a un nombre réel de l'intervalle I, le point A est le point de la courbe c_f d'abscisse a. On suppose que la courbe c_f admet en A une tangente T non parallèle à l'axe des ordonnées :

On appelle **nombre dérivé** de f en a le **coefficient directeur de la tangente** T à la courbe c_f au point A (a, f(a)). Ce nombre dérivé est noté f'(a) et on dit que f est dérivable en a.



2. dérivées des fonctions usuelles :

Fonction f	Dérivée f'
f(t) = a un nombre réel constant	f'(t) = 0
$f(t) = \frac{1}{t}$	$f'(t) = \frac{-1}{t^2}$
$f(t) = \sqrt{t}$	$f'(t) = \frac{1}{2\sqrt{t}}$
$f(t) = t^{\alpha}$	$f'(t) = \alpha t^{\alpha - 1}$
$f(t) = \ln t$	$f'(t) = \frac{1}{t}$
$f(t) = e^t$	$f'(t) = e^t$

Fonction f	Dérivée <i>f'</i>
$f(t) = \sin t$	$f'(t) = \cos t$
$f(t) = \cos t$	$f'(t) = -\sin t$
$f(t) = \tan t$	$f'(t) = 1 + \tan^2 t$ $= \frac{1}{\cos^2 t}$
f(t) = Arcsin t	$f'(t) = \frac{1}{\sqrt{1 - t^2}}$
f(t) = Arctan t	$f'(t) = \frac{1}{1+t^2}$
$f(t) = e^{at} \text{ où } $ $a \in \mathbb{C}$	$f'(t) = ae^{at}$

3. Règles de dérivation :

u et v désignent deux fonctions dérivables sur un intervalle I, k est une constante et α un réel.

Dérivée d'une somme :
$$(u+v)' = u' + v'$$
Dérivée du produit par une constante :
$$(ku)' = k \times u'$$
Dérivée d'un produit :
$$(uv)' = u'v + uv'$$
Dérivée de l'inverse :
$$\left(\frac{1}{u}\right)' = \frac{-u'}{u^2}$$
Dérivée d'un quotient :
$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

Dérivée d'une fonction composée :
$$(v \circ u)' = v' \circ u \times u'$$
Avec un logarithme :
$$(e^u)' = e^u \times u'$$
Avec une exponentielle :
$$(\ln u)' = \frac{u'}{u}$$
Avec une puissance
$$(u^\alpha)' = \alpha u^{\alpha-1} u'$$

4. Application de la dérivée.

Théorème.

Soit f une fonction dérivable sur un intervalle I et f'sa fonction dérivée.

- Si, pour tout nombre réel x de I, on a f'(x) > 0 alors f est **strictement croissante** sur I.
- Si, pour tout nombre réel x de I, on a f'(x) < 0 alors f est **strictement décroissante** sur I.
- Si, pour tout nombre réel x de I, on a f'(x) = 0 alors f est **constante** sur I.

Théorème.

Soit f une fonction dérivable sur un intervalle I et f'sa fonction dérivée.

• Si, pour la valeur a de I, la dérivée s'annule en changeant de signe alors la fonction f admet un **maximum local** ou un **minimum local**.

Théorème.

Soit f une fonction dérivable sur un intervalle [a,b] et k un réel tel que $f(a) \le k \le f(b)$.

• Si, pour tout x de]a,b[, on a f'(x) > 0 ou f'(x) < 0 alors l'équation f(x) = k admet une solution unique dans l'intervalle [a,b].

V. Primitive d'une fonction

1. Définition et propriété.

Soit f une fonction définie sur un intervalle I de \mathbb{R} .

On appelle **primitive** de f sur I toute fonction F dérivable sur I et dont la dérivée F' est égale à f. Pour tout x de I, F'(x) = f(x).

Théorème.

← Toute fonction dérivable sur un intervalle I admet des primitives sur I.

 \uparrow Si F est une primitive de f sur l'intervalle I alors toutes les primitives de f sur I sont les fonctions G définies sur I par G(x) = F(x) + k où k est une constante.

 \rightarrow Si f admet des primitives sur l'intervalle I, alors il existe une et une seule primitive G de f telle que $G(x_0) = y_0$ où x_0 et y_0 sont donnés.

Exemple.

Soit la fonction $f(x) = x^2 + 2x - 4$.

Une primitive de f est $F(x) = \frac{x^3}{3} + x^2 - 4x + k$ où k est une constante.

Propriétés.

F et G sont des primitives respectives de f et g sur un intervalle I, k est une constante F+G est une primitive de f+g sur I et $k \times F$ est une primitive de $k \times f$ sur I.

Attention. F×G n'est généralement pas une primitive de $f \times g$. De même, $\frac{1}{F}$ et $\frac{F}{G}$ ne sont généralement pas des primitives de $\frac{1}{f}$ et $\frac{f}{g}$.

2. Primitives usuelles.

k est une constante

Fonction f	Primitives F
f(x) = a un réel	F(x) = ax + k
$f(x) = \frac{1}{x}, x > 0$	$F(x) = \ln x + k$
$f(x) = \frac{1}{x^2}$	$F(x) = \frac{-1}{x} + k$
$f(x) = \frac{1}{\sqrt{x}}, x > 0$	$F(x) = 2\sqrt{x} + k$
$f(x) = x^n$ $n \neq 0, n \neq -1$	$F(x) = \frac{x^{n+1}}{n+1} + k$

Fonction f	Primitives F
$f(x) = e^x$	$F(x) = e^x + k$
$f(x) = \sin x$	$F(x) = -\cos x + k$
$f(x) = \cos x$	$F(x) = \sin x + k$
$f(x) = \sin(ax + b)$ $a \neq 0$	$F(x) = \frac{-1}{a}\cos(ax+b) + k$
$f(x) = \cos(ax + b)$ $a \neq 0$	$F(x) = \frac{1}{a}\sin(ax+b) + k$

Fonction f	Primitives F
$f(x) = \frac{1}{\cos^2 x}$ $f(x) = 1 + \tan^2 x$	$F(x) = \tan x + k$
$f(x) = \frac{1}{\sqrt{1 - x^2}}$	F(x) = Arcsin x + k
$f(x) = \frac{1}{1 + x^2}$	F(x) = Arctan x + k

Fonction <i>f</i>	Primitives F
$f(x) = [u(x)]^n \times u'(x)$ $n \neq 0, n \neq -1$	$F(x) = \frac{[u(x)]^{n+1}}{n+1} + k$
$f(x) = \frac{u'(x)}{u(x)}, u(x)$ > 0	$F(x) = \ln[u(x)] + k$
$f(x) = e^{u(x)} \times u'(x)$	$F(x) = e^{u(x)} + k$