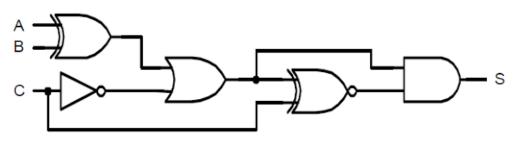
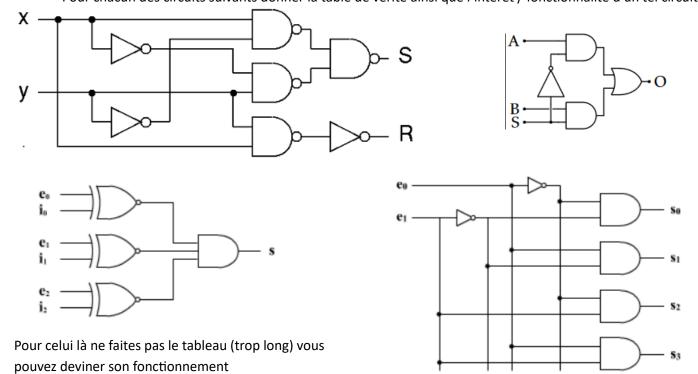

Fiche d'exercices sur les portes logiques

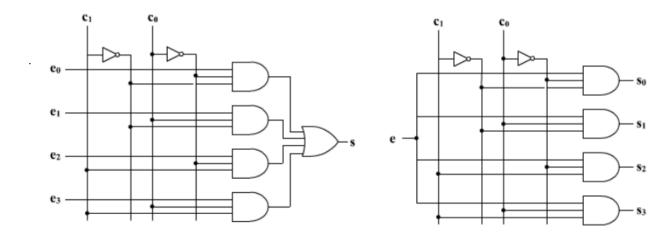
Exercice 1


- 1) Donner la table de vérité de ce circuit
- 2) En déduire l'expression booléenne réalisée par ce circuit.
- 3) Ce circuit peut être traduit par l'expression booléenne : Non (Non(x) ou Non(y)) . En déduire une égalité entre expressions booléennes.

Exercice 2

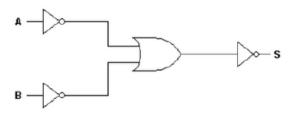
- 1) Donner la table de vérité de ce circuit
- 2) En déduire l'expression booléenne réalisée par ce circuit.
- 3) En vous inspirant de la question 3) de l'exercice précédent, déduire une égalité entre expressions booléennes.


Exercice 3

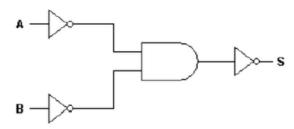


Donner la table de vérité du circuit ci-contre.

Exercice 4 Les incontournables

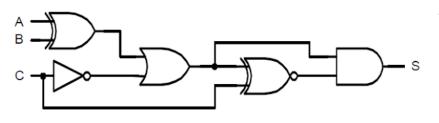

Pour chacun des circuits suivants donner la table de vérité ainsi que l'intérêt / fonctionnalité d'un tel circuit.

Corrections


Exercice 1

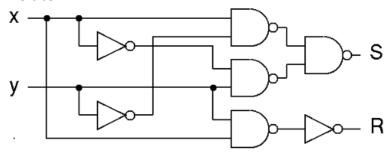
- 2) Ce circuit correspond à une porte ET.
- 3) Non (Non(x) ou Non(y))=x ET y

Α	В	S
0	0	0
0	1	0
1	0	0
1	1	1

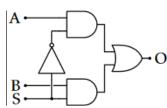

Exercice 2

- 2) Ce circuit correspond à une porte OU.
- 3) Non (Non(x) ET Non(y))=x OU y

Α	В	S
0	0	0
0	1	1
1	0	1
1	1	1

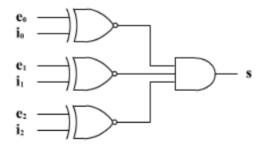

Exercice 3

Traduction du circuit : ((A XOR B) ET C) ou (Non(A XOR B) ET Non(C))


Α	В	С	S
0	0	0	1
0	1	0	0
1	0	0	0
1	1	0	1
0	0	1	0
0	1	1	1
1	0	1	1
1	1	1	0

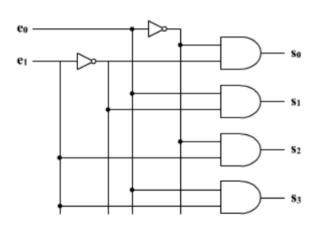
Exercice 4

C'est un additionneur à deux entrées.


Χ	Υ	S	R
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

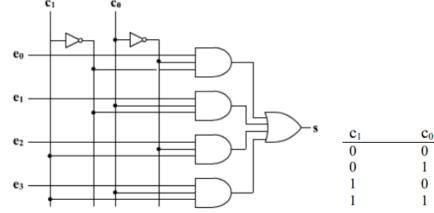
Le diagramme ci-dessous correspond à celui d'un muxer. Si S = 0 c'est A qui ressort en O, sinon c'est B. Ce que l'on constate dans sa table de vérité.

Expression booléenne : (A et Non(S)) ou (B et S)


Α	В	S	0
0	0	0	0
0	1	0	0
1	0	0	1
1	1	0	1
0	0	1	0
0	1	1	1
1	0	1	0
1	1	1	1

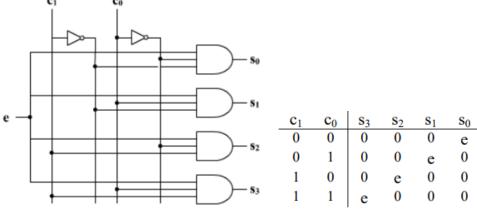
e_0	i_0	e_1	i_1	e_2	i_2	S
0	0	0	0	0	0	1
0	0	0	0	0	1	0
0	0	0	0	1	0	0
0	0	0	0	1	1	1
0	0	0	1	0	0	0
0	0	0	1	0	1	0
0	0	0	1	1	0	0
0	0	0	1	1	1	0

Le tableau complet et 8 fois plus long : 64 lignes


Comparateur Le comparateur est un circuit qui compare deux mots de n bits. En sortie, un bit indique le résultat de la comparaison : 1 s'il y a égalité entre les deux codes présents à l'entrée, 0 si ces codes sont différents

e_1	e_0	S_3	\mathbf{S}_2	s_1	s_0
0	0	0 0 0 1	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

Décodeur


Le décodeur est un circuit qui possède n bits à d'entrées et au plus 2n bits en sortie. Parmi toutes ces sorties une seule est active, son numéro est formé par les n bits en entrée.

c_1	c_0	s
0	0	e_0
0	1	e ₀ e ₁ e ₂ e ₃
1	0	e_2
1	1	e_3

Multiplexeur

Le multiplexage est une opération qui consiste à utiliser un équipement unique pour traiter plusieurs signaux. Exemple : une ligne de transmission pour transmettre plusieurs signaux. On parle alors de multiplexage temporel : De mêmes intervalles de temps sont accordés successivement pour chacun des signaux à transmettre. Le multiplexeur agit comme un "commutateur" qui transmet à la sortie le signal d'une entrée sélectionnée par un code binaire.

Démultiplexeur

Ce circuit réalise la fonction inverse du multiplexeur. Il possède plusieurs sorties (2^n) , un signal en entrée et n bits pour désigner la sortie vers laquelle sera aiguillé le signal d'entrée.