Devoir surveillé n°6: Suites

Exercice 1 (3 points)

Dresser le tableau de variation de $f(x) = \frac{x^2 - 3x - 2}{x - 1}$ définie sur $\mathbb{R} - \{1\}$

Exercice 2 (3 points)

La suite (u_n) est arithmétique de raison r. On sait que $u_{50} = 406$ et $u_{100} = 806$.

- 1. Calculer la raison r et u_0 .
- 2. Calculer la somme $S = u_{50} + u_{51} + ... + u_{100}$.

Exercice 3 (5 points)

Une entreprise décide de verser à ses ingénieurs une prime annuelle de 400€.

Pour ne pas se dévaluer, il est prévu que chaque année la prime augmente de 5% par rapport à l'année précédente (ce qui revient à multiplier la prime par 1,05).

On note (u_n) la suite des primes avec $u_1 = 400$.

- 1. Calculer u_2 puis u_3 (c'est-à-dire la prime versée par l'entreprise la $2^{\rm ème}$ année et la $3^{\rm ème}$ année)
- 2. Exprimer u_{n+1} en fonction de u_n . En déduire la nature de la suite (u_n) .

Un ingénieur compte rester 20 ans dans cette entreprise à partir du moment où est versée la prime.

- 3. Calculer la prime qu'il touchera la 20ème année (c'est-à-dire u_{20})
- 4. Soit S des primes touchées sur les 20 années ,c'est-à-dire $S=u_1+u_2+u_3+\ldots+u_{20}$
 - a) Restitution organisée de connaissance : prouver que $S = \frac{u_1(1,05^{20}-1)}{1,05-1}$
 - b) Donner S.

Exercice 4 (5 points)

On considère les deux suites (u_n) et (v_n) définies, pour tout $\in \mathbb{N}$, par : $u_n = 6 \times 2^n + 7n - 5$ et $v_n = -6 \times 2^n + 7n - 5$

- 1. Soit (w_n) la suite définie par $w_n = u_n + v_n$. Démontrer que (w_n) est une suite arithmétique dont vous préciserez les caractéristiques.
- 2. Soit (t_n) la suite définie par $t_n = u_n v_n$. Démontrer que (t_n) est une suite géométrique dont vous préciserez les caractéristiques.
- 3. Démontrer que : $u_n = \frac{1}{2}(w_n + t_n)$
- 4. Exprimer la somme $S_n = u_0 + u_1 + u_2 + ... + u_n$ en fonction des termes de (w_n) et (t_n) puis en fonction de n.

Exercice 5 (6 points)

On considère la suite (u_n) définie par : $\begin{cases} u_0 = 3 \\ u_{n+1} = \frac{2}{1+u_n} \end{cases}$ pour tout entier naturel.

1. Calculer u_1 et u_2 . La suite (u_n) est-elle arithmétique ? Géométrique ?

Bonus : démontrer par récurrence que $\forall n \in \mathbb{N}, 0 \le u_n \le 3$

- 2. On considère la suite (v_n) définie pour tout entier naturel n par : $v_n = \frac{u_n 1}{u_n + 2}$
 - a) Calculer v_0 , v_1 et v_2 . Conjecturer de manière détaillée la nature de la suite (v_n) .
 - b) Prouver votre conjecture

Coup de pouce : dans un premier temps traduire au brouillon votre conjecture sous forme d'égalité, dans un deuxième temps exprimer v_{n+1} en fonction de u_{n+1} puis en fonction de u_n , vérifier l'égalité écrite au brouillon, conclure.

- c) Exprimer v_n en fonction de n.
- d) Exprimer u_n en fonction de v_n puis de n. Que vaut u_{10} ?

Devoir surveillé n°6: Suites

Exercice 1 (3 points)

Dresser le tableau de variation de $f(x) = \frac{x^2 - 3x - 2}{x - 1}$ définie sur $\mathbb{R} - \{1\}$

Exercice 2 (3 points)

La suite (u_n) est arithmétique de raison r. On sait que $u_{50} = 406$ et $u_{100} = 806$.

- 1. Calculer la raison r et u_0 .
- 2. Calculer la somme $S = u_{50} + u_{51} + ... + u_{100}$.

Exercice 3 (5 points)

Une entreprise décide de verser à ses ingénieurs une prime annuelle de 400€.

Pour ne pas se dévaluer, il est prévu que chaque année la prime augmente de 5% par rapport à l'année précédente (ce qui revient à multiplier la prime par 1,05).

On note (u_n) la suite des primes avec $u_1 = 400$.

- 1. Calculer u_2 puis u_3 (c'est-à-dire la prime versée par l'entreprise la $2^{\rm ème}$ année et la $3^{\rm ème}$ année)
- 2. Exprimer u_{n+1} en fonction de u_n . En déduire la nature de la suite (u_n) .

Un ingénieur compte rester 20 ans dans cette entreprise à partir du moment où est versée la prime.

- 3. Calculer la prime qu'il touchera la 20ème année (c'est-à-dire u_{20})
- 4. Soit S des primes touchées sur les 20 années ,c'est-à-dire $S=u_1+u_2+u_3+\ldots+u_{20}$
 - a) Restitution organisée de connaissance : prouver que $S = \frac{u_1(1,05^{20}-1)}{1,05-1}$
 - b) Donner S.

Exercice 4 (5 points)

On considère les deux suites (u_n) et (v_n) définies, pour tout $\in \mathbb{N}$, par : $u_n = 6 \times 2^n + 7n - 5$ et $v_n = -6 \times 2^n + 7n - 5$

- 1. Soit (w_n) la suite définie par $w_n = u_n + v_n$. Démontrer que (w_n) est une suite arithmétique dont vous préciserez les caractéristiques.
- 2. Soit (t_n) la suite définie par $t_n = u_n v_n$. Démontrer que (t_n) est une suite géométrique dont vous préciserez les caractéristiques.
- 3. Démontrer que : $u_n = \frac{1}{2}(w_n + t_n)$
- 4. Exprimer la somme $S_n = u_0 + u_1 + u_2 + ... + u_n$ en fonction des termes de (w_n) et (t_n) puis en fonction de n.

Exercice 5 (6 points)

On considère la suite (u_n) définie par : $\begin{cases} u_0 = 3 \\ u_{n+1} = \frac{2}{1+u_n} \end{cases}$ pour tout entier naturel.

1. Calculer u_1 et u_2 . La suite (u_n) est-elle arithmétique ? Géométrique ?

Bonus : démontrer par récurrence que $\forall n \in \mathbb{N}, 0 \le u_n \le 3$

- 2. On considère la suite (v_n) définie pour tout entier naturel n par : $v_n = \frac{u_n 1}{u_n + 2}$
 - a) Calculer v_0 , v_1 et v_2 . Conjecturer de manière détaillée la nature de la suite (v_n) .
 - b) Prouver votre conjecture

Coup de pouce : dans un premier temps traduire au brouillon votre conjecture sous forme d'égalité, dans un deuxième temps exprimer v_{n+1} en fonction de u_{n+1} puis en fonction de u_n , vérifier l'égalité écrite au brouillon, conclure.

- c) Exprimer v_n en fonction de n.
- d) Exprimer u_n en fonction de v_n puis de n. Que vaut u_{10} ?

Devoir surveillé n°6 : Suites

Exercice 1 (3 points)

$$f(x) = \frac{x^2 - 3x - 2}{x - 1}$$

$$f'(x) = \frac{(2x - 3)(x - 1) - (x^2 - 3x - 2)}{(x - 1)^2}$$

$$= \frac{2x^2 - 5x + 3 - (x^2 - 3x - 2)}{(x - 1)^2} = \frac{x^2 - 2x + 5}{(x - 1)^2}$$
Résolution de $x^2 - 2x + 5 = 0$

$$\Delta$$
= 4 - 20 = -16 donc x^2 - 2 x + 5 est toujours positif

x	-∞		1		+∞
(x-1) ²		+	0	+	
f'(x)		+	Ш	+	
f(x)	/	7	7	/	/

Exercice 2 (5min)

La suite
$$(u_n)$$
 est arithmétique de raison r . On sait que $u_{50} = 406$ et $u_{100} = 806$.
1.
$$\begin{cases} u_{50} = 406 \\ u_{100} = 806 \end{cases} \Leftrightarrow \begin{cases} u_0 + 50r = 406 \\ u_0 + 100r = 806 \end{cases} \Leftrightarrow \begin{cases} u_0 + 50r = 406 \\ 50r = 400 \end{cases} \Leftrightarrow \begin{cases} u_0 + 400 = 406 \\ r = 8 \end{cases} \Leftrightarrow \begin{cases} u_0 = 6 \\ r = 8 \end{cases}$$
2.
$$S = u_{50} + u_{51} + \ldots + u_{100} = \frac{(100 - 50 + 1)(u_{50} + u_{100})}{2} = \frac{51(406 + 806)}{2} = 30906.$$

Exercice 3 (25min)

Une entreprise décide de verser à ses ingénieurs une prime annuelle de 400€.

Pour ne pas se dévaluer, il est prévu que chaque année la prime augmente de 5% par rapport à l'année précédente (ce qui revient à multiplier la prime par 1,05).

On note (u_n) la suite des primes avec $u_1 = 400$.

- 1. Calculer $u_2 = 400 \times 1,05 = 420$ puis $u_3 = 441$
- 2. Exprimer $u_{n+1} = 1{,}05u_n$, donc (u_n) est géométrique de raison 1,05.
- 3. (u_n) est géométrique donc $u_n = u_0 q^n = u_1 q^{n-1}$ donc ici $u_{20} = 400 \times 1,05^{19} \approx 1010,78$

4.
$$S = u_1 + u_2 + u_3 + \dots + u_{20} = u_1 + u_1 q^1 + u_1 q^2 + \dots + u_1 q^{19}$$

$$qS = qu_1 + qu_2 + qu_3 + \dots + qu_{20} = u_1q^1 + u_1q^2 + u_1q^3 + \dots + u_1q^{20}$$

4.
$$S = u_1 + u_2 + u_3 + \dots + u_{20} = u_1 + u_1 q^1 + u_1 q^2 + \dots + u_1 q^{19}$$

 $qS = qu_1 + qu_2 + qu_3 + \dots + qu_{20} = u_1 q^1 + u_1 q^2 + u_1 q^3 + \dots + u_1 q^{20}$
 $qS - S = u_1 q^{20} - u_1 \Leftrightarrow S(q - 1) = u_1 (q^{20} - 1) \Leftrightarrow S = \frac{u_1 (1 - 1, 05^{20})}{1 - 1, 05} \approx 13\ 226,38$

Exercice 4 (15min)

On considère les deux suites (u_n) et (v_n) définies, pour tout $\in \mathbb{N}$, par : $u_n = 6 \times 2^n + 7n - 5$ et $v_n = -6 \times 2^n + 7n - 5$

- 1. $w_n = 6 \times 2^n + 7n 5 6 \times 2^n + 7n 5 = 14n 10$. Donc (w_n) est une suite arithmétique de raison 14 et de premier terme $w_0 = -10$
- 2. Soit (t_n) la suite définie par $t_n = 6 \times 2^n + 7n 5 + 6 \times 2^n 7n + 5 = 12 \times 2^n$. Donc (t_n) est une suite géométrique de raison 2 et de premier terme $t_0 = 12$.
- 3. Démontrer que : $\frac{1}{2}(w_n + t_n) = \frac{1}{2}(14n 10 + 12 \times 2^n) = 7n 5 + 6 \times 2^n = u_n$

4. Exprimer la somme
$$S_n = u_0 + u_1 + u_2 + \dots + u_n = \frac{1}{2}(w_0 + t_0) + \frac{1}{2}(w_1 + t_1) + \dots + \frac{1}{2}(w_n + t_n) = \frac{1}{2}(w_0 + w_1 + w_2 + \dots + w_n) + \frac{1}{2}(t_0 + t_1 + t_2 + \dots + t_n) = \frac{1}{2}\frac{(n+1)(w_0 + w_n)}{2} + \frac{1}{2}\frac{t_0(2^{n+1} - 1)}{2^{n+1}} = \frac{(n+1)(-10+14n-10)}{4} + \frac{12(2^{n+1} - 1)}{2} = \frac{(n+1)(-10+7n)+12(2^{n+1} - 1)}{2}$$

Exercice 5 (25 min)

On considère la suite (u_n) définie par : $\begin{cases} u_0 = 3 \\ u_{n+1} = \frac{2}{1+u_n} \end{cases}$ pour tout entier naturel.

1. Calculer
$$u_1 = \frac{2}{4} = \frac{1}{2}$$
 et $u_2 = \frac{2}{\frac{3}{2}} = \frac{4}{3}$.

 $\frac{u_1}{v_2} = \frac{1}{6} \text{ et } \frac{u_3}{v_2} = \frac{8}{3} \text{ donc la suite n'est pas géométrique.}$

 $u_1 - u_0 = -2.5$ et $u_2 - u_1 = \frac{4}{3} - \frac{1}{2} = \frac{5}{6}$ donc (u_n) n'est pas arithmétique.

Bonus : démontrer par récurrence que $\forall n \in \mathbb{N}, 0 \le u_n \le 3$

 $u_0 = 3$ donc pour n = 0 on a bien $0 \le u_n \le 3$ Initialisation: Hérédité:

Soit k tel que $0 \le u_k \le 3$ donc $1 \le u_k + 1 \le 4$ Donc $\frac{1}{1} \ge \frac{1}{u_{k+1}} \ge \frac{1}{4}$ la fonction inverse étant décroissante sur [1;4]

elle change l'ordre
$$\operatorname{Donc} 2\frac{1}{4} \le \frac{2}{u_{k+1}} \le 2\frac{1}{1} \qquad \operatorname{donc} \frac{1}{2} \le u_{k+1} \le 2 \text{ or } 0 \le \frac{1}{2} \text{ et } 2 \le 3$$

Donc $0 \le u_{k+1} \le 3$

La propriété est donc bien héréditaire

Conclusion: ainsi on a bien $\forall n \in \mathbb{N}, 0 \leq u_n \leq 3$

2. On considère la suite (v_n) définie pour tout entier naturel n par : $v_n = \frac{u_n - 1}{u_n + 2}$

a) Calculer $v_0 = \frac{2}{5}$, $v_1 = -\frac{\frac{1}{2}}{\frac{5}{2}} = -\frac{1}{5}$ et $v_2 = \frac{\frac{1}{3}}{\frac{10}{2}} = \frac{1}{10}$. La suite (v_n) semble être géométrique de raison $\frac{-1}{2}$

et de premier terme
$$v_0 = \frac{2}{5}$$
.
b) $v_{n+1} = \frac{u_{n+1}-1}{u_{n+1}+2} = \frac{\frac{2}{1+u_n}-1}{\frac{2}{1+u_n}+2} = \frac{\frac{2}{1+u_n}-\frac{1+u_n}{1+u_n}}{\frac{2}{1+u_n}+\frac{2(1+u_n)}{1+u_n}} = \frac{\frac{1-u_n}{1+u_n}}{\frac{4+2u_n}{1+u_n}} = \frac{1-u_n}{4+2u_n} = -\frac{1}{2}\frac{u_n-1}{u_n+2} = -\frac{1}{2}v_n \text{ donc } (v_n) \text{ est bien}$

géométrique de raison $\frac{-1}{2}$

c)
$$v_n = \frac{2}{5} \left(\frac{-1}{2} \right)^n$$
.

d)
$$v_n = \frac{u_{n-1}}{u_{n+2}} \Leftrightarrow v_n(u_n+2) = u_n - 1$$
 car vu que u_n est compris entre 0 et $3u_n + 2$ ne peut être nul.

$$\Leftrightarrow u_n(v_n-1)=-2v_n-1 \Leftrightarrow u_n=rac{-2v_n-1}{(v_n-1)}$$
 car on a trivialement $v_n<1$

$$\Leftrightarrow u_n = \frac{2v_n + 1}{1 - v_n} \Leftrightarrow u_n = \frac{2\frac{2}{5}\left(\frac{-1}{2}\right)^n + 1}{1 - \frac{2}{5}\left(\frac{-1}{2}\right)^n}$$

$$u_{10} = \frac{2\frac{2}{5}\left(\frac{-1}{2}\right)^{10} + 1}{1 - \frac{2}{5}\left(\frac{-1}{2}\right)^{10}} = \frac{854}{853} \approx 1,00117$$