1. Algorithme

L'objectif est, étant donné un polynôme du second degré, de calculer plusieurs choses :

• Le discriminant $\Delta (\Delta = b^2 - 4ac)$,

Les coordonnées du sommet de la parabole
$$\left(\frac{-b}{2a}, \frac{-\Delta}{4a}\right)$$

• D'indiquer le nombre de racines et de les afficher

Il va de soi que ces calculs peuvent se faire, souvent plus rapidement, à la main et que c'est en même temps un prétexte pour apprendre à programmer sa machine.

La description du problème se fait selon l'algorithme suivant :

```
Début SecondDegré
    Lire les coefficients a, b, c
    \Delta \leftarrow b^2 - 4ac
    Afficher « Discriminant :»,\Delta
    S \leftarrow -b/(2a)
     T \leftarrow -\Delta/(4a)
    Afficher « Sommet : », S, T
    Si \Delta < 0
    alors
              Afficher « Pas de solution »
     Sinon
              Si \Delta = 0
              Alors
                       Afficher « Une solution », S
              Sinon
                       Afficher « 2 solutions : »
                  X \leftarrow \frac{-b - \sqrt{\Delta}}{2a}Y \leftarrow \frac{-b + \sqrt{\Delta}}{2a}
                       Afficher X,Y
              FinSi
     Fin'Si
Fin SecondDegré
```

La traduction de cet algorithme dépend ensuite de la machine utilisée. Les modèles les plus anciens ne disposaient pas d'instructions structurées IF THEN et la traduction dans ce cas est nettement plus difficile. Par contre, les modèles plus récents (à partir de Casio Graph 25, ou de Texas Ti80) permettent une traduction très simple.

2. Programme pour Casio de type Graph fx-7000

Voici le programme qui convient pour les anciennes machines Casio :

Fx-7000G	fx-7500G	fx-8000G	fx-8500G
Fx-7700G	fx-7800GC	fx-8800GC	
Fx-6900G	fx-7900GC	fx-9900GC	CFX-9900GC

Le programme ne porte pas de nom. Il peut être enregistré dans un numéro Pn.

```
"A="?→A, ∟
"B="?→B, 
"C="?→C↓
B^2 - 4AC \rightarrow D^4
                             Calcul et affichage du déterminant D
-B」(2A)→S↓
                             Calcul de l'abscisse du sommet S
-D」(4A)→T,
                             Calcul de l'ordonnée du sommet T
"SOMMET (S,T)"↓
S⊿
T⊿
D<0⇒Goto 1,
                             Si D<0 aller à Lbl 1
D=0⇒Goto 2,
                             Si D=0 aller à Lbl 2
"2 SOLUTIONS"↓
                             Sinon D>0
"X1=":(-B+√D)」(2A) ⊿
"X2=":(-B-√D)」(2A) ▲
Goto 3⊣
                             Aller à la fin du programme
Lbl 1,
                             Cas où D<0
"PAS DE SOLUTION" -
Goto 3⊣
                             Aller à la fin du programme
Lb1 2,⊣
                             Cas où D=0
"1 SOLUTION"↓
"X=":-B」(2A) ⊿
Lb1 3⊣
"FIN"
```

3. Programme pour calculatrices Casio récentes

Le programme ci-dessous convient pour les modèles Casio ci-dessous (la liste est impressionnante !) :

Fx-6910G	CFX-9930GT	CFX-9960GT		
Fx-6910aG	fx-8930GT	CFX-9940GT	CFX-9990GT	
Graph 20	Graph 30	Graph 60	Graph 80	Graph 100
Graph 25	Graph 35	Graph 65	Graph 100+	
Graph 35+				

Le programme peut être nommé SECDEGRE par exemple.

"A="?→A,		
"B="?→B₊J		
"C="?→C↓		
B ² −4AC→D⊿	Calcul et affichage du déterminant D	
-B」(2A)→S₊J	Calcul de l'abscisse du sommet S	
-D」(4A)→T₊J	Calcul de l'ordonnée du sommet T	
"SOMMET (S,T)"↓		
S⊿		
T⊿		
If D<0₊	Si D<0	
Then "PAS DE SOLUTION" -		
Goto 3പ	Aller à Lbl 3	
Else If D=0₊J	Si D=0	
Then "1 SOLUTION"⊣		
"X=":-B」(2A) ▲		
Else "2 SOLUTIONS"	Sinon D>0	
"X1=":(-B+√D)」(2A) ⊿		
"X2=":(-B-√D)」(2A) ⊿		
IfEnf₊		
Lbl 3니		
"FIN"		

4. Programme pour Ti 80 et Ti 82-83

Remarque : on peut remplacer le test « If D=0 » par « If Abs(D) < 1E-12 » pour éviter les problèmes d'arrondi

Ti 80	Ti 82-83
:DISP "A":INPUT A	:ClrHome
:DISP "B":INPUT B	:Disp "AX ² +BX+C=0"
:DISP "C":INPUT C	:Prompt A,B,C
:CLRHOME	:ClrHome
$:B^2-4AC \rightarrow D$	$:B^2-4AC \rightarrow D$
:DISP "DELTA",D	:Output(1,1,"DELTA =")
:-B/(2A)→S	:Output(1,8,D)
$:-D/(4A) \rightarrow T$	$:-B/(2A) \rightarrow S:-D/(4A) \rightarrow T$
:DISP "SOMMET :"	:Output(2,1,"SOMMET /")
:DISP S,T	:Output(3,1,S):Output(3,9,T)
:IF D<0	:If D<0
:THEN	:Then
:DISP "PAS DE SOLUTION"	:Output(4,1,"PAS DE SOLUTION")
:ELSE	:Else
:IF D=0	:If D=0
:THEN	:Then
:DISP "1 SOLUTION"	:Output(4,1,"1 SOLUTION")
:DISP S	:Output(5,1,S)
:ELSE	:Else
: (−B−√(D))/(2A)→E	: (-B-√(D))/(2A)→E
:(-B+√(D))/(2A)→F	: (-B+√(D))/(2A)→F
:DISP "2 SOLUTIONS :"	:Output(4,1,"2 SOLUTIONS :")
:DISP E	:Output(5,1,E)
:DISP F	:Output(6,1,F)
:END	:End
:END	:End