EXERCICE 1

On note i le nombre complexe de module 1 et d'argument $\frac{\pi}{2}$.
On considère les nombres complexes z_{1}, z_{2} et z_{3} définis par:

$$
z_{1}=1+\mathrm{i} \sqrt{3}, \quad z_{2}=\mathrm{e}^{-\mathrm{i} \frac{\pi}{4}} \quad \text { et } \quad z_{3}=\mathrm{e}^{\mathrm{i} \frac{\pi}{12}} .
$$

1. Déterminer l'écriture exponentielle de z_{1}.
2. Déterminer l'écriture algébrique de z_{2}.
3. Démontrer que $z_{1} \times z_{2}=2 z_{3}$.
4. En déduire l'écriture algébrique de z_{3}.
5. En déduire que $\cos \left(\frac{\pi}{12}\right)=\frac{\sqrt{2}+\sqrt{6}}{4}$ et $\sin \left(\frac{\pi}{12}\right)=\frac{-\sqrt{2}+\sqrt{6}}{4}$.

Exercice 2 QCMs

1. La forme exponentielle du nombre complexe $z=-5+5 i$ est :
a. $z=5 \mathrm{e}^{\mathrm{i} \frac{3 \pi}{4}}$
b. $z=5 \sqrt{2} \mathrm{e}^{i \frac{3 \pi}{4}}$
c. $z=5 \mathrm{e}^{-\mathrm{i} \frac{\pi}{4}}$
d. $z=5 \sqrt{2} \mathrm{e}^{-\mathrm{i} \frac{\pi}{4}}$
2. Si $z_{1}=2 \sqrt{2} \mathrm{e}^{\mathrm{i} \frac{3 \pi}{4}}$ et $z_{2}=\sqrt{2} \mathrm{e}^{-\mathrm{i} \frac{\pi}{3}}$, alors le produit $z_{1} \times z_{2}$ est un nombre complexe:
a. de module 4 et dont un argument est $\frac{2 \pi}{7}$
b. de module $2 \sqrt{2}$ et dont un argument est $\frac{5 \pi}{12}$
c. de module 4 et dont un argument est $\frac{5 \pi}{12}$
d. de module $2 \sqrt{2}$ et dont un argument est $\frac{13 \pi}{12}$
3. Le nombre complexe $\frac{\sqrt{2}-\mathrm{i} \sqrt{2}}{\sqrt{2}+\mathrm{i} \sqrt{2}}$ est égal à :
a. 1
b. i
c. -1
d. -i
4. Le nombre complexe z de module $2 \sqrt{3}$ et dont un argument est $\frac{2 \pi}{3}$ a pour forme algébrique :
a. $\sqrt{3}-3 \mathrm{i}$
b. $3-\mathrm{i} \sqrt{3}$
c. $-\sqrt{3}+3 \mathrm{i}$
d. $-3+i \sqrt{3}$

où i est le nombre complexe de module 1 et d'argument $\frac{\pi}{2}$.
Le produit $z_{1} \times z_{2}$ est égal à :

5. On considère le nombre complexe $z=3 \mathrm{e}^{-\mathrm{i} \frac{\pi}{6}}$. La forme algébrique du nombre complexe z est :
a. $-\frac{3 \sqrt{3}}{2}+\frac{3}{2} \mathrm{i}$
b. $\frac{3 \sqrt{3}}{2}-\frac{3}{2} \mathrm{i}$
c. $\frac{3 \sqrt{3}}{2}+\frac{3}{2} \mathrm{i}$
d. $-\frac{3 \sqrt{3}}{2}-\frac{3}{2} \mathrm{i}$
6. $z_{1}=1+\mathrm{i} \sqrt{3}$ et $z_{2}=\sqrt{3}-\mathrm{i}$. La forme exponentielle du nombre complexe $z_{1} \times z_{2}$ est :
a. $4 \mathrm{e}^{\mathrm{i} \frac{\pi}{6}}$
b. $-4 \mathrm{e}^{-\mathrm{i} \frac{\pi}{6}}$
c. $2 \mathrm{e}^{\mathrm{i} \frac{\pi}{6}}$
d. $4 \mathrm{e}^{\mathrm{i} \frac{\pi}{2}}$
7. La forme exponentielle du nombre complexe $z=-3+\mathrm{i} 3 \sqrt{3}$ est :
a. $3 \mathrm{e}^{\mathrm{i} \frac{2 \pi}{3}}$
b. $6 \mathrm{e}^{\mathrm{i} \frac{2 \pi}{3}}$
c. $6 \mathrm{e}^{-\mathrm{i} \frac{2 \pi}{3}}$
d. $-6 \mathrm{e}^{-\mathrm{i} \frac{2 \pi}{3}}$
8. On considère le complexe $z=\sqrt{2}-\mathrm{i} \sqrt{2}$.

Le nombre complexe z^{2} est égal à :
a. $z^{2}=2$
b. $z^{2}=4$
c. $z^{2}=-4$
d. $z^{2}=-4 \mathrm{i}$

